
1
CIS 422/522

CIS 422/522 Fall 2011 1

Midterm Review

The purpose of software engineering
Teamwork

Processes and project planning
Software Requirements

CIS 422/522 Fall 2011 2

The “Software Crisis”

• Have been in “crisis” since the advent of “big”
software (roughly 1965)

• What we want for software development
– Low risk, predictability
– Lower costs and proportionate costs
– Faster turnaround

• What we have:
– High risk, high failure rate
– Poor delivered quality
– Unpredictable schedule, cost, effort
– Examples: Ariane 5, Therac 25, Mars Lander, DFW Airport, FAA

ATC etc.

• Characterized by lack of control

CIS 422/522 Fall 2011 3

Large System Context

• Focus large, complex systems
– Multi-person: many developers, many stakeholders
– Multi-version: intentional and unintentional evolution

• Quantitatively distinct from small developments
– Complexity of software rises exponentially with size
– Complexity of communication rises exponentially

• Qualitatively distinct from small developments
– Multi-person introduces need for organizational functions,

policies, oversight, etc.
– More stakeholders and more kinds of stakeholders

CIS 422/522 Fall 2011 4

Software is Pre-Industrial
Pre-Industrial

• Craftsman builds product
– Builds one product at a time
– Each product is unique, parts

are not interchangeable
– Quality depends on

craftsman’s skill – product of
training, experience

– Many opportunities for error

• Focus on individual products
– Customization is easy

• Scaling is difficult
– Parts are not interchangeable
– No economy of scale
– Control problems rise

exponentially with product
size!

Post-Industrial

• Products produced by
machines
– Quality depends on

machines & manufacturing
process

– Production requires little
training or experience

• Focus on developing the
means of production
– Craftsman builds means to

build product (tools, factory)
– Customization is difficult

• Easily scales
– Parts are interchangeable
– Products are alike
– Economies of scale apply

2
CIS 422/522

CIS 422/522 Fall 2011 5

Implications

• Small system development is driven by technical issues
(I.e., programming)

• Large system development is dominated by
organizational issues
– Managing complexity, communication, coordination, etc.
– Projects fail when these issues are inadequately addressed

• Lesson #1: programming ≠≠≠≠ software engineering
– Techniques that work for small systems fail utterly when scaled

up

– Programming alone won’t get you through real developments or
even this course

CIS 422/522 Fall 2011 6

View of SE in this Course

• The purpose of software engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.
– “Intellectual control” means that we are able

make rational choices based on an understanding
of the downstream effects of those choices (e.g.,
on system properties).

– Managerial control means we control
development resources (budget, schedule,
personnel).

CIS 422/522 Fall 2011 7

Meaning of “Control”

• Both are necessary for success!
• Intellectual control implies (as an ideal)

– We understand what properties we want for the software
(functional behavior and system qualities)

– Can distinguish good choices from bad
– We can reliably and predictably build a system with the

desired qualities

• Managerial control implies
– We make accurate estimations

– We deliver on schedule and within budget

• Assertion: Managerial control is not really possible
without intellectual control

CIS 422/522 Fall 2011 8

Course Approach

• Will learn methods for acquiring and
maintaining control of software projects

• Managerial control (most of focus to date)
– People management and team organization
– Organizing people and tasks
– Planning and guiding development

• Intellectual control
– Choosing appropriate order for decisions and

ensuring feedback/correction
– Establishing and communicating exactly what

should be built

3
CIS 422/522

CIS 422/522 Fall 2011 9

Teamwork and
Group Dynamics

CIS 422/522 Fall 2011 10

What is a Great Team?

• Diverse Skills
– People skills, communication and writing skills,

design skills, implementation skills and knowledge

• Coherence
– Ability to build and maintain a shared vision
– Shared expectations

• Mutual Respect and Responsibility
– You don’t have to like each other, but you need to

trust and respect each other — and to earn your
teammates trust and respect

– This is an enduring part of professionalism in the
real world

CIS 422/522 Fall 2011 11

Team Roles

• Manager: responsible for schedule
• System architect
• Programmer
• Quality control
• Technical documentation
• User documentation
• User interface design/build

• Configuration control (build-master)

Lessons Learned:
– Assigning people to roles ensure someone is personally

responsible for each deliverable

CIS 422/522 Fall 2011 12

What do software developers do?

-Technical excellence is not enough

• Most roles are not coding
• So how do they spend their time?

• IBM study (McCue, 1978):
– 50% team interactions
– 30% working alone
– 20% not directly productive

4
CIS 422/522

CIS 422/522 Fall 2011 13

"Egoless" design

(Weinberg, Psychology of Computer Programming)

• Investing ego in group
• "Letting go" of ego investment in code, design, ideas

– No winning or losing design debates
(focus on improving the product)

– Once contributed, ideas belong to the group
– Criticism is aimed at concepts, not people

• The best designers criticize their own designs!
– Our own assumptions are the hardest to critique
– Corollary: A conscientious critic is your best ally

CIS 422/522 Fall 2011 14

Being a Good Team Member

• Attributes most valued by other team
members
– Dependability

• When you say you’ll do something, you do it

• Correctly
• On time

– Carrying your own weight (doing a fair share of the
work)

• People will overlook almost everything else if
you do these

CIS 422/522 Fall 2011 15

The Software Lifecycle

Introduction

CIS 422/522 Fall 2011 16

Need to Organize the Work

• Nature of a software project
– Software development produces a set of interlocking,

interdependent work products
• E.g. Requirements -> Design -> Code

– Implies dependencies between tasks
– Implies dependencies between people

• Must organize the work such that:
– Every task gets done
– Tasks get done in the right order
– Tasks are done by the right people
– The product has the desired qualities
– The end product is produced on time

5
CIS 422/522

CIS 422/522 Fall 2011 17

Usefulness of Life Cycle Models

• Application of “divide-and-conquer” to
software processes and products
– Goal: identify distinct and relatively independent

phases and products
– Can then address each somewhat separately

• Intended use
– Provide guidance to developers in what to

produce and when to produce it
– Provide a basis for planning and assessing

development progress

• Never an accurate representation of what
really goes on

CIS 422/522 Fall 2011 18

Common Models

Waterfall
Prototyping

Iterative
Spiral
Agile

CIS 422/522 Fall 2011 19

A “Waterfall” Model

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

What are the issues:
1. As a guide to how software

should be developed?
2. As a model of any real

development?

CIS 422/522 Fall 2011 20

A “Waterfall” Model

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

1. As a guide: does not address
some common development risks
• What happens if requirements

are wrong?
• Is scheduling or budget is wrong?

2. As a model: unrealistic as a
model of any real development
• How do real developments

differ?
• Models are abstractions of reality

Problems of temporal
distance

6
CIS 422/522

CIS 422/522 Fall 2011 21

Waterfall Model Variations

There have been many variations
attempting to address these issues

CIS 422/522 Fall 2011 22

Characteristic Model: Prototyping

• Waterfall variation
• First system versions

are prototypes, either:
– Interface

– Functional

• Attempts to address risk
of building the wrong
system

CIS 422/522 Fall 2011 23

Characteristic Processes:
The Iterative Model

• Process is a sequence of iterations, each producing an increment
of the working software (sequence of waterfalls). Addresses
– Risk that software cannot be completed – build incremental subsets
– Risk of building the wrong system – stakeholder have opportunities

to see the software
– Also, feasibility, schedule, budget and others to some extent

CIS 422/522 Fall 2011 24

Characteristic Processes:
The Spiral Model

• Process viewed as
repeating cycles of
increasing scale

• Identify risks and
determine (next set of)
requirements, build next
version by extension,
increasing scale each
time

24

7
CIS 422/522

CIS 422/522 Fall 2011 25

Spiral Model

determine
goals

Risk evaluation
and Mitigation

plan next
phase

development

CIS 422/522 Fall 2011 26

Spiral Model Goals

• Response lack of risk analysis and risk
mitigation in “waterfall” process
– Make risk analysis standard part of process
– Address risk issues early and often

• Explicit risk analysis at each phase
• Framework for explicit risk-mitigation

strategies
– E.g., prototyping

• Explicit Go/No-Go decision points in process

CIS 422/522 Fall 2011 27

Characteristic Processes:
Agile (scrum, RAD, XP)

• Process viewed as nested sequence of short builds (sprints)
– Even tighter timing loop
– Addresses rapidly changing or emerging requirements

– Code-driven, little planning or documentation

CIS 422/522 Fall 2011 28

How do we choose a development
process?

8
CIS 422/522

CIS 422/522 Fall 2011 29

Goals vs. Risks

• Balance goals and risks
• Goal: proceed as rationally and systematically as

possible from a statement of goals to a design
that demonstrably meets those goals
– Understand that any process description is an

abstraction
– Always must compensate for deviation from the ideal

(e.g., by iteration)

• Risk: Anything that might lead to a loss of control
is a project risk
– E.g., won’t meet the schedule, will overspend budget,

will fail to deliver the proper functionality

CIS 422/522 Fall 2011 30

A Software Engineering Perspective

• Choose processes, methods, notations, etc.
to provide an appropriate level of control for
the given product and context
– Sufficient control to achieve results
– No more than necessary to contain cost and effort

CIS 422/522 Fall 2011 31

Example

• Project 1 assumptions
1. Deadline and resources (time, personnel) are fixed
2. Delivered functionality and quality can vary (though they

affect the grade)
3. Risks:

1. Missing the deadline
2. Technology problems
3. Inadequate requirements

• Process model
– All of these risks can be addressed to some extent by

building some version of the product, then improving on it
as time allows (software & docs.)

– Technology risk requires building/finding software and
trying it (prototyping)

– Most forms of incremental development will address these

CIS 422/522 Fall 2011 32

Project Planning and Management

9
CIS 422/522

CIS 422/522 Fall 2011 33

From Process to Plan

• Process definition manifests itself in the project
plan
– Process definition is an abstraction

– Many possible ways of implementing the same process

• Project plan makes process concrete, it assigns
– People to roles
– Artifacts to deliverables and milestones

– Activities to tasks over time

• Looked at several techniques for documenting
these

CIS 422/522 Fall 2011 34

Document Types and Purposes

• Management documents
– Basis for managerial control of resources

• Calendar time, skilled man-hours budget
• Other organizational resources

– Project plan, WBS, Development schedule
– Use: allows managers to track actual against expected

consumption of resources
• Development documents

– Basis for product development (intellectual control)
– ConOps, Requirements (SRS), Architecture, Detail design,

etc.
– Uses:

• Making and recording development decisions
• Allows developers to track decisions from stakeholder needs to

implementation

CIS 422/522 Fall 2011 35

Work Breakdown Structure

• This is a technique to analyze the content of
work and cost by breaking it down into its
component parts. It is produced by :
– Identifying the key tasks
– Breaking each task down into component parts
– Continuing to breakdown until manageable work

packages have been identified. These can then be
allocated to the appropriate person

• The WBS is used to allocate responsibilities

CIS 422/522 Fall 2011 36

10
CIS 422/522

CIS 422/522 Fall 2011 37

Lessons Learned from Projects

• The work breakdown defines the specific
tasks team members must accomplish

• Results of inadequate work breakdown and
task definitions
– If incomplete, some tasks may not be done
– If imprecise, people do not know exactly what to

do. May do too little or the wrong thing.
– Without a complete set of tasks, schedules are

unrealistic

CIS 422/522 Fall 2011 38

Milestone Planning

• Milestone planning is used to show the major steps
that are needed to reach the goal on time

• Milestones typically mark completion of key
deliverables or establishment of baselines

• Often associated with management review points
– Baseline: when a work product is put under configuration

management and all changes are controlled

– E.g., Requirements baseline, project plan complete, code
ready to test

CIS 422/522 Fall 2011 39

Pert Chart

• Network analysis or PERT is used to analyze
the inter-relationships between the tasks
identified by the work breakdown structure
and to define the dependencies of each task

• Helps identify where ordering of tasks may
cause problems because of precedence or
resource constraints
– Where one person cannot do two tasks at the

same time
– Where adding a person can allow tasks to be

done in parallel, shortening the project

CIS 422/522 Fall 2011 40

11
CIS 422/522

CIS 422/522 Fall 2011 41

Gantt Charts

• Method for visualizing a project schedule
showing
– The set of tasks
– Start and completion times
– Task dependencies
– Responsibilities

• PERT charts can be reformatted as Gantt
charts

CIS 422/522 Fall 2011 42

Example Gantt Chart

http://www.spottydog.u-net.com/guides/faq/faq.html

CIS 422/522 Fall 2011 43

Development Documents

Making and recording engineering
decisions

CIS 422/522 Fall 2011 44

Product Development Cycle

Business Goals
Hardware
Software
Marketing
other

Product Planning
Economic Evaluation
Development Strategy
Marketing Strategy
Prioritization

Requirements
Capabilities
Qualities
Reusability

Architecture
Tradeoffs of
quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Why do we document?
What needs to be communicated?
Who produces it?
Who uses it and for what?
What needs to be in it?
Usefulness for control?

12
CIS 422/522

CIS 422/522 Fall 2011 45

Document Types and Purposes

• Development documents
– Basis for intellectual control

• Used for making and communicating engineering decisions
(requirements, design, implementation, verification, etc.)

• Allows developers to track decisions from stakeholder
needs to implementation

– ConOps, SRS, Architecture, Detail design, etc.

CIS 422/522 Fall 2011 46

Requirements

Problem Analysis
Requirements Specification

CIS 422/522 Fall 2011 47

What is a “software requirement?”

• A description of something the software must
do or property it must have

• The set of system requirements denote the
problem to be solved and any constraints on
the solution
– Ideally, requirements specify precisely what the

software must do without describing how to do it
– Any system that meets requirements should be an

acceptable implementation

CIS 422/522 Fall 2011 48

Importance of Getting Requirements Right

2. The later that software errors are
detected, the more costly they are

to correct

1. The majority of software errors
are introduced early in software

development

1

2

5

10

20

50

100

design unit test,
integration operation

requirements code
debug

acceptance initial
test

Phase in which error detected

0

10

20

30

40

50

requirements
and

functional

analysis

design construction and
system

development test

acceptance
testing and
operation

Development Phase

$1 error

$100 error

13
CIS 422/522

CIS 422/522 Fall 2011 49

Requirements Phase Goals

• What does “getting the requirements right” mean
in the systems development context?

• Only three goals
1. Understand precisely what is required of the software
2. Communicate that understanding to all of the parties

involved in the development (stakeholders)
3. Control production to ensure the final system satisfies

the requirements
• Sounds easy but hard to do in practice, observed

this and the resulting problems in projects
• Understanding what makes these goals difficult

to accomplish helps us understand how to
mitigate the risks

CIS 422/522 Fall 2011 50

What makes requirements difficult?

• Comprehension (understanding)
– People don’t (really) know what they want (…until they see it)
– Superficial grasp is insufficient to build correct software

• Communication
– People work best with regular structures, conceptual coherence, and

visualization
– Software’s conceptual structures are complex, arbitrary, and difficult to

visualize
• Control (predictability, manageability)

– Difficult to predict which requirements will be hard to meet
– Requirements change all the time
– Together can make planning unreliable, cost and schedule

unpredictable
• Inseparable Concerns

– Many requirements issues cannot be cleanly separated (I.e., decisions
about one necessarily impact another)

– Difficult to apply “divide and conquer”
– Must make tradeoffs where requirements conflict

CIS 422/522 Fall 2011 51

Purposes and Stakeholders

• Many potential stakeholders using requirements
for different purposes
– Customers: the requirements document what should

be delivered
– Managers: provides a basis for scheduling and a

yardstick for measuring progress
– Software Designers: provides the “design-to”

specification
– Coders: defines the range of acceptable

implementations
– Quality Assurance: basis for validation, test planning,

and verification
– Also: potentially Marketing, regulatory agencies, etc.

CIS 422/522 Fall 2011 52

Needs of Different Audiences

• Customer/User
– Focus on problem

understanding
– Use language of problem

domain
– Technical if problem space

is technical

Developer

Customer

Requiremen
ts

Analyst

Problem Understanding/
Business Needs

Detailed technical
Requirements

• Development organization
– Focus on system/software

solutions
– Use language of solution

space (software)
– Precise and detailed enough

to write code, test cases,
etc.

14
CIS 422/522

CIS 422/522 Fall 2011 53

Documentation Approaches

• ConOps: informal requirements to describe the
system’s capabilities from the customer/user point of
view
– Answer the questions, “What is the system for?” and “How

will the user use it?”
– Tells a story: “What does this system do for me?”
– Helps to use a standard template

• SRS: formal, technical requirements for development
team
– Purpose is to answer specific technical questions about the

requirements quickly and precisely
• Answers, “What should the system output in this circumstance?”
• Reference, not a narrative, does not “tell a story”

– Precise, unambiguous, complete, and consistent as practical

CIS 422/522 Fall 2011 54

Informal Techniques

• Most requirements specification methods are informal
– Natural language specification
– Use cases
– Mock-ups (pictures)
– Story boards

• Benefits
– Requires little technical expertise to read/write
– Useful for communicating with a broad audience
– Useful for capturing intent (e.g., how does the planned system

address customer needs, business goals?)
• Drawbacks

– Inherently ambiguous, imprecise
– Cannot effectively establish completeness, consistency
– However, can add rigor with standards, templates, etc.

• Exemplified by discussion of use cases

CIS 422/522 Fall 2011 55

Scenario Analysis and Use Cases

• Applying scenario analysis in the development
process

• Requirements Elicitation
– Identify stakeholders who interact with the system
– Collect “user stories” - how people would interact with the

system to perform specific tasks
• Requirements Specification

– Record as use-cases with standard format
– Use templates to standardize, drive elicitation

• Requirements verification and validation
– Review use-cases for consistency, completeness, user

acceptance
– Apply to support prototyping
– Verify against code (e.g., use-case based testing)

CIS 422/522 Fall 2011 56

A systematic approach to
use cases

• Uses a standard template

• Easier to check, read

• Still informal

Use Cases

15
CIS 422/522

CIS 422/522 Fall 2011 57

Benefits and Drawbacks

• Use cases can be an effective tool for:
– Identifying key users and their tasks
– Characterizing how the system should work from each

user’s point of view
– Communicating to non-technical stakeholders

• Generally inadequate for detailed technical
requirements
– Difficult to find specific requirements
– Inherently ambiguous and imprecise
– Cannot establish completeness or consistency
– Possible exception: applications doing simple user-

centric tasks with little computation (e.g., your project)

CIS 422/522 Fall 2011 58

Technical Specification

The SRS
The role of rigorous specification

CIS 422/522 Fall 2011 59

Requirements Documentation

• Is a detailed requirements specification necessary?
• How do we know what “correct” means?

– How do we decide exactly what capabilities the modules
should provide?

– How do we know which test cases to write and how to
interpret the results?

– How do we know when we are done implementing?
– How do we know if we’ve built what the customer asked for

(may be distinct from “want” or “need”)?
– Etc…

• Correctness is a relation between a spec and an
implementation (M. Young)

• Implication: until you have a spec, you have no
standard for “correctness”

CIS 422/522 Fall 2011 60

Technical Requirements

• Focus on developing a technical specification
– Should be straight-forward to determine

acceptable inputs and outputs
– Can systematically check completeness

consistency

• Provides
– Detailed specification of precisely what to build
– Design-to specification
– Build-to specification for coders
– Characterizes expected outputs for testers

16
CIS 422/522

CIS 422/522 Fall 2011 61

Desirable SRS Properties

Semantic Properties*

• Complete
• Consistent

• Unambiguous
• Verifiable

• Implementation independent

* Properties of the
specification’s semantics
(what it says) independently
of how it’s said

Packaging Properties+

• Modifiable
• Readable

• Organized for reference and
review

• Reusable

+ Properties arising from the
way the specification is
written (organization,
formats, notations)

CIS 422/522 Fall 2011 62

The Formal Methods Dilemma

• Standard approaches (e.g., prose specs) lack
sufficient rigor to meet high-assurance goals

• Formal requirements methods have desired technical
virtues viewed as impractical for large, complex
systems
– Capability for unambiguous specification, precision,

testability, and analyzability
– Industry concern for practicality

• Concern for difficulty to write/read, required expertise, ability to
scale

• Concern for real-world issues of fuzzy or changing
requirements

• Concern for fit with industrial development context
• Adds up to perceived cost/schedule risk

• Implication: Need for Practical Formal Methods

CIS 422/522 Fall 2011 63

The Good News

• A little rigor in the right places can help a lot
– Adding formality is not an all-or-none decision
– Use it where it matters most to start (critical parts,

potentially ambiguous parts)
– Often easier, less time consuming than trying to

say the same thing in prose

• E.g. in describing conditions or cases
– Use predicates (i.e., basic Boolean expressions)
– Use tables where possible

CIS 422/522 Fall 2011 64

Graphic Notations for Simple Machines

17
CIS 422/522

CIS 422/522 Fall 2011 65

Tabular for Larger Machines

CIS 422/522 Fall 2011 66

State Charts for Concurrent and
Hierarchical Machines

*Careful since there are many possible semantics

CIS 422/522 Fall 2011 67

Tables Express Cases

CIS 422/522 Fall 2011 68

Is a “Good” SRS Achievable?

• A qualified “yes”
– Mutual satisfaction of some goals is difficult
– Want completeness but users don’t know what they want

and requirements change.
– Many audiences and purposes, only one possible

organization and language
– Want formality (precision, verifiability, analyzability) but need

readability.

• Tradeoffs and compromises are inevitable
– Usefulness of establishing document purpose in advance.
– Make them by choice not chance!

• It isn’t easy
– Effort, expertise, technique

18
CIS 422/522

CIS 422/522 Fall 2011 69

Requirements Summary

• Requirements characterize “correct” system
behavior

• Being in control of development requires:
– Getting the right requirements
– Communicating them to the stakeholders
– Using them to guide development

• Requirements activities must be incorporated
in the project plan
– Requirements baseline
– Requirements change management

CIS 422/522 Fall 2011 70

Real meaning of “control”

• What does “control” really mean?
• Can we really get everything under control

then run on autopilot?
• Rather, does control mean a continuous

feedback loop?
1. Define ideal
2. Make a step
3. Measure deviation from idea
4. Correct direction or redefine ideal and

go back to 2

CIS 422/522 Fall 2011 71

Questions?

